
User guide for self-managed PostgreSQL
Updated 2024/01/19

This user guide describes how to tune a self-managed database instance using the DBtune
software as a service. Self-managed instances include either an on-prem server or a
self-managed cloud instance, such as EC2, GCE, Azure VM or cloud instances from any other
cloud provider. DBtune works well on a variety of systems, including production enterprise
systems.

Please contact the DBtune team if you would like to tune a fully-managed database instance
instead, such as Amazon RDS, Azure Flexible Server or Google CloudSQL.

1

mailto:info@dbtune.com

System prerequisites 3
Infosec whitelisting 3
System requirements 3
Packages to be installed 3
Time commitment to be expected from the user 3

DBtune overview 4
What is DBtune? 4

The challenge: Maximizing database efficiency beyond defaults 4
The problem: Neglected tuning leading to issues 4
The solution: DBtune’s adaptive AI approach 4
Why you should care: Practical benefits for your business 4

DBtune infrastructure 5
DBtune performance measurement 6
DBtune safety and automatic control policies 6

Total memory usage guardrail 6
Mitigation of temporary low performance during the tuning process 6

DBtune performance results 7
How to get started 8

Step 1: Login 8
Step 2: Add database instance to be tuned 8
Step 3: Download and run the DBtune Python client 10
Step 4: Monitor the tuning session 13
Step 5: Lay back, DBtune can take it from here 15

How to deploy DBtune 16
When to initiate a tuning session using DBtune 16
Scheduling a timed tuning session 16
Handling multiple workloads 17
Ensuring ongoing performance 17
Integrating DBtune with query tuning 17
Increase DBtune iteration time to capture 18

Upgrading DBtune after trial 19
Additional material 20

Interrupting the tuning session 20
Configuration management panel 20
Tuning the database instance once again 21
Modify memory usage guardrail threshold 22

Security and privacy 22

2

System prerequisites

Infosec whitelisting
Please ask your infosec department to whitelist these URLs for external access:

● AWS endpoints that is used in the DBtune client:
https://bwqh2n66kg.execute-api.eu-north-1.amazonaws.com/prod

● AWS s3 bucket link used for downloading the client:
https://dbtune-eu-client-package-prod.s3.amazonaws.com

System requirements
● Superuser access to PostgreSQL
● PostgreSQL versions 10, 11, 12, 13, 14, 15, 16
● OS: Any Linux system
● Browser: Google Chrome, Firefox, Safari
● Server hosting the database: on-prem server or self-managed cloud instance, e.g., EC2,

GCE, Azure VM

Packages to be installed
● python3.8 # or later
● python3.8-pip # or later
● postgresql12 # or later
● postgresql-contrib # same version as postgres
● psutil==5.9.5
● psycopg2
● requests==2.29.0
● PyYAML==5.3.1
● screen or tmux

Time commitment to be expected from the user
● First time users: about 30 minutes to start a tuning session.

Second time users: 3 minutes.
● The user is not required to monitor the tuning session. However the DBtune web

dashboard shows the tuning progress in real time.
○ The final optimal configuration is provided by DBtune after about 3.5 hours of

tuning — It will automatically be installed on the server without user intervention.
○ The user can interrupt the tuning session and revert to the original configuration

at any point. They can also cease the tuning session and deploy a new
configuration to production when they believe they have reached a satisfactory or
new optimal configuration before the full tuning session has ended.

3

DBtune overview

What is DBtune?

The challenge: Maximizing database efficiency beyond defaults
Default database configurations often fall short of delivering optimal performance. The
intricacies of data interaction, application behavior, and underlying hardware necessitate tailored
configuration adjustments. These settings dictate how data flows through the system, impacting
the performance of critical components such as RAM, CPU, and disk. This tuning process is
crucial, aligning databases with real-world usage while making the most of available hardware.
Parameters like shared_buffers, work_mem, and random_page_cost in PostgreSQL exemplify
the need for this fine-tuning.

The problem: Neglected tuning leading to issues
Neglecting database tuning can trigger a range of issues. These include inflated infrastructure
costs, sluggish response times, increased downtime, decreased productivity, compromised data
accuracy, dissatisfied users, missed opportunities, and potential financial setbacks. In today's
competitive landscape, these consequences can significantly hinder an organization's growth
and reputation.

The solution: DBtune’s adaptive AI approach
DBtune emerges as a solution to database configuration challenges. Unlike traditional manual
tuning, vendor-specific tools, or DIY approaches, DBtune leverages advanced machine learning
to dynamically adapt and optimize database configurations. The size, complexity, and workload
of the database no longer impede effective tuning. The result? Noticeable improvements in
system performance, increased transactions per second (TPS), shorter query runtimes, reduced
technology expenses, and simplified management.

Why you should care: Practical benefits for your business
DBtune isn't just another tool; it's an advantage for your business. By fine-tuning database
configurations with precision, you can unlock previously untapped performance potential. This,
in turn, can lead to cost savings by optimizing infrastructure spending, whether your databases
are on-premise or in the cloud. Moreover, the automation of tuning tasks frees up your database
administrators to focus on more strategic activities, such as refining query performance.

In a data-centric business landscape, DBtune empowers your database to operate at its best,
improving performance, trimming costs, and allowing experts to steer your data initiatives
forward.

4

DBtune infrastructure
We present the high-level infrastructure view for the deployment of DBtune on a customer
self-managed PostgreSQL instance. The figure below shows an overview of DBtune's
architecture, which is an optimizer as a service (OaaS).

The DBtune OaaS maintains a repository of data collected from previous tuning sessions; This
is represented by the prior learnings in the figure. This data is used to build models of how
PostgreSQL responds to different knob configurations. For a new application, DBtune builds
machine learning models as represented by the ML optimizer box in the figure, to guide
experimentation and recommend optimal PostgreSQL configuration settings. Each
recommendation and the subsequent observation of the behavior of the database instance
provides DBtune with more information in a feedback loop that allows it to refine its models and
improve their accuracy.

The system consists of two parts. The first is the client-side controller (on the left in the above
diagram) that interacts with the target PostgreSQL instance to be tuned. It collects runtime
information from the PostgreSQL instance using psutil and pg_stat_statements, installs new
configurations in the conf.d directory, and collects performance measurements.

The second part is DBtune’s tuning manager on the right side, called the AI module in the
DBtune instance. It receives the information collected from the controller and stores it in its
repository with data from previous tuning sessions. This repository does not contain any
confidential information about the customer's database instance; it only contains knob
configurations and performance data. The DBtune manager continuously analyzes new data
and refines the internal ML models. These models automatically identify the recommended
PostgreSQL configuration without human intervention.

5

The DBtune controller on the left is installed by the user, to connect to the customer's
PostgreSQL instance. The DBtune controller is open-source under Apache 2.0 license. The
OaaS on the right functions as a recommendation system for the database instance on the left.
It finds the best configuration that optimizes throughput or latency depending on the user set
optimization target. It learns to optimize by observing the database instance, so it generalizes
for a new workload, for a new PostgreSQL version, and for a new hardware/cloud instance.

A full DBtune tuning session consists of approximately 30 iterations on average, i.e DBtune tries
30 different database configurations before providing a final instance configuration which
delivers either peak TPS or minimum average query run time. This final configuration is then
automatically installed on the server.

DBtune performance measurement
Each DBtune iteration lasts about 7 minutes. Since DBtune will perform a total of 30 iterations,
the total tuning session time will be about 3.5 hours. The total amount of time depends on if you
set the system to allow or not allow the database to restart during tuning — More about the
restart option below.

DBtune safety and automatic control policies
DBtune is safe to use in production environments. Guardrails exist by design to protect against
negative performance implications compared to the original baseline figures. DBtune's
customers running in production have never experienced undesired downtime or undesirable
degradation in performance due to the DBtune technology.

Total memory usage guardrail
DBtune implements a guardrail to monitor the total RAM usage during the tuning session. As a
default behavior DBtune will automatically react and move away from PostgreSQL
configurations that make the database instance use more than 90% available memory.

Mitigation of temporary low performance during the tuning process
DBtune implements a guardrail to monitor the performance of each database configuration that
is used on the customer instance during the tuning session. If the performance of a
configuration is below 40% of the best found configuration so far, then DBtune automatically
abandons that configuration by moving to the next iteration and recommending a new
alternative configuration.

6

DBtune performance results
We report an example of the improvement in throughput (TPS) and latency (in milliseconds) that
can be expected by the DBtune user on their PostgreSQL instance. The experiment is
performed using the standard Wikipedia OLTPBench benchmark.

The configuration provided by PostgreSQL is named "default" in the plot. This is the
configuration that is delivered in the PostgreSQL released package. We observe that DBtune is
able to speed up the performance by 4.2x from 58 to 243 transactions per second. A similar
outcome is observable for the latency metric, where DBtune is able to increase the performance
of the baseline by 2.2x by reducing the average latency of the system from 831 ms to 371 ms.

7

How to get started

Step 1: Login
● Visit app.dbtune.com.
● Create an account, confirm your email address and log in.

Step 2: Add database instance to be tuned
After login, first-time users will be taken to the following screen.

The infocards can help you through the process:

8

https://beta.dbtune.com

Select the database management system and the database hosting:
Database hosting can either be self-hosted (managed by the user, either on-prem or hosted on
a cloud instance like EC2) or managed (database as a service, e.g., Amazon RDS, Azure
Flexible Server).

Choose if the database can be restarted:
There are a number of parameters that can not be changed unless there is a restart of the
database itself. The tuning session benefits from allowing the DB instance to restart as a greater
number of parameters can be included. These cannot be changed and tuned if the option of no
restart is selected. In the case restart is enabled, the database instance will be unavailable for a
short period of time when each new configuration is deployed at each restart about every 5
minutes during the tuning session. The instance will be unavailable for a few seconds up to a
few minutes depending on the user application.

Step 3: Download and run the DBtune Python client
Prepare a shell on your server machine:

9

1. Since DBtune will be running for a few hours, it is recommended to use a
terminal multiplexer such as “screen” so as not to accidentally disconnect the
tuning session if the CLI is closed. Type the command “screen” on the terminal of
your client machine, you will get the following output:

2. Login as root user or use the command “sudo su”.
3. Download the DBtune client using the wget, curl or download command on the

web interface. The command will download the DBtune client as a tar file and
uncompress it. The client you download is specific to your user account and to
the database instance you are about to connect it to, and it reflects the choices
on tuning target and the restart option. To change any of these you need to
download a new client.

10

4. cd into the dbtune_client folder and edit the dbtune_config.yml file with the
database instance connection details.

The commented out fields are not mandatory. This is a description of the fields:
● connection_string

○ host
■ The host name.

11

○ port
■ The port postgres is running on.

○ dbname
■ The name of the database instance.

○ user
■ The database username

○ password
■ The password for the database user

● restart_command
○ If you have installed postgres from source and the command

“sudo systemctl restart postgresql” does not restart postgres,
provide a command that does in this field. A working restart
command is necessary if you allow the client to restart postgres,
or if the postgres extension pg_stat_statements is not currently
enabled and you want to tune for query runtime. Enabling
pg_stat_statements requires one restart, which the client will ask if
you want to allow, and if you do then it will do it for you even if you
choose not to allow restarts in the previous step from the DBtune
web interface.

5. Start the client by running ‘python3 dbtune.py’.

6. Enter a database instance name and press the Start tuning button on the web
interface

12

7. Once the tuning has started you can detach the screen:
■ Press Ctrl + a (release) and then d to detach: the tuning will keep on

running in the background;
■ You can reattach the screen using the following command: "screen -r";
■ For more details on how to use "screen" see this link.

Step 4: Monitor the tuning session
After starting the tuning session the user will be redirected to the dashboard

You can monitor the throughput, the average query runtime, disk I/O, RAM usage, CPU, and
IOPS usage in real time as the tuning progresses.

The currently active configuration is shown in the configurations panel. Under Tuning summary
you can see all the configurations that were explored by DBtune. Click on a point in the chart to
visualize the configuration in the bottom panel.

13

https://www.gnu.org/software/screen/manual/screen.html

Step 5: Sit back, DBtune can take it from here
The tuning session is running, no additional effort is required from the user.

DBtune is learning how to optimize your database with respect to your specific workload and
instance resources. The tuning session will last about 3.5 hours. After that DBtune will
automatically install on the instance being tuned the PostgreSQL configuration that delivers the
optimal results for your chosen target objective (throughput or query runtime).

If you require the optimization to run faster, please contact the DBtune team at
info@dbtune.com. In this user guide we have been conservative in defining the tuning session
for the user. We can adapt to your needs and make the tuning faster.

14

mailto:info@dbtune.com

How to deploy DBtune

When to initiate a tuning session using DBtune
DBtune is an online system designed to dynamically observe and optimize workloads in
real-time through 30 optimization iterations. Achieving the best results involves triggering a
tuning session during the period of maximum load and peak usage. This aligns with times when
end-users perceive system sluggishness and are actively seeking improvements.

Example: Imagine a bank operational from 9 am to 5 pm. The daily transaction load
slows down the database. To enhance performance, DBtune should be triggered
between 9 am and 5 pm, the heavy workload window. Conversely, tuning during
nighttime hours lacks significance due to the absence of performance bottlenecks.

Tip: If the peak workload ends at 5 pm, start DBtune no later than 1:30 pm. This ensures
the entire DBtune tuning session operates within the period of peak load.

Based on extensive experience with numerous users, there is typically only one time window
that the user wants to optimize. For instance, in the example above, the focus is on the 9 am to
5 pm window. Performance during the 5 pm to 9 am time frame isn't problematic for the bank,
rendering optimizations unnecessary.

DBtune's goal is to tune the time window that matters. Users should initiate DBtune when the
intensive database usage window is active, completing the tuning session entirely within that
period, i.e. the full tuning session needs to start and complete between 9 am and 5 pm in the
example above.

Handling multiple workloads
While the standard use case involves optimizing a single workload, scenarios can arise where
distinct workloads occur at different times of the day or the week.

Example: Consider the bank scenario: apart from weekday transactions, a complex
reporting workload arises on Saturdays. This workload is very different from the one that
the system is experiencing during the weekdays because it is composed of complex
queries that manipulate large swaths of data in the database. This distinct nature
necessitates separate tuning sessions.

In such cases, users trigger DBtune twice: once during the weekday 9-to-5 window and again
during the Saturday window. The outcomes, say, config1 and config2, are optimal configurations
for their respective time frames. The two configurations have to be then scheduled to appear on
the server with access to the conf.d directory. A script written by the user schedules these

15

configurations to apply to the system via the conf.d directory, thus accommodating diverse
workloads. The script simply copies the configuration files provided by DBtune in the conf.d
directory at the right time so that the optimal configuration for each workload is used.

Ensuring ongoing performance
DBtune delivers optimal performance after a tuning session. However, as databases are
dynamic, evolve and grow, regular usage of DBtune is crucial to maintain peak performance.

Example: Consider a scenario where a DBtune session optimizes a database instance
on June 1st. After a week, performance dips noticeably due to application changes
rendering the current configuration ineffective.

Tip: Monitor your database's performance and, upon detecting degradation, launch a
new DBtune session. If issues relate to database configuration, DBtune will swiftly
restore optimal performance.

The frequency of necessary re-tuning varies based on your application. The following events
typically signal the need for a new DBtune session:

1. Changes in one or more queries due to application updates.
2. Upgrading PostgreSQL to a newer version.
3. Migrating the database to different hardware or cloud instances.
4. Substantial growth in the database's size.

Integrating DBtune with query tuning
After conducting query tuning, initiate a DBtune session to further optimize performance. As
query tuning is often iterative, running DBtune after each round of tuning enhances query plans.
If results fall short of expectations, restart the iterative process: first, perform query tuning,
followed by parameter tuning with DBtune. The compounded performance of query tuning and
parameter tuning can be much higher than the single improvements.

16

Upgrading DBtune after trial
This trial is valid for one month — During the trial the user can tune one database instance as
many times as needed.

The banner below is present when the user is using a free trial. To complete a purchase click on
"Upgrade now".

Enter the payment details to subscribe — The payment is powered by Stripe.

When you press the "Check out" button, Stripe asks the card details to finalize the purchase.

17

The subscription includes a monthly fee of $100 per database instance. Currently, only one
database instance subscription at a time can be purchased. If you'd like to acquire multiple
database instances please contact our sales team at info@dbtune.com. Discounts on
purchases of 5 database instances and above are available with our sales representatives.

Additional material

Interrupting the tuning session
To stop the tuning sessions the user has two equivalent options:

1. From the CLI: Press Ctrl-c to abort the tuning session. You will be prompted to choose
between reinstating the initial configuration and installing the best configuration found so
far.

2. From the dashboard screen: Press the "Stop tuning" button in the web interface. This
will install the best configuration found so far on the system.

Configuration management panel
The configuration management panel can be found below the performance monitoring plot on
the DBtune dashboard screen. This allows you to perform specific actions regarding the
database configurations explored by DBtune.

1. "Restore initial" button:
Stops the tuning session and reinstates the default system configuration. Note that once
the tuning session is aborted or completed, this action can not be performed.

2. "Find best" button:

18

mailto:info@dbtune.com

It allows the user to trace the best performing configuration found by DBtune. After
pushing the button the user will identify with a circle the best performing configuration in
the performance plot as shown below.

3. "Download all" button:
Allows the user to download the history of configurations applied on the user’s database
along with the achieved database throughput and/or query runtime.

4. "Apply this" button:
Allows the user to install a specific configuration from the tuning history on the user
database instance. Note that you need to select a configuration from the tuning
summary plot before using this feature. Once the tuning session is aborted or completed,
this action can not be performed.

5. "Download this" button:
Allows you to download the PostgreSQL configuration file named “99_dbtune.conf” for
the selected configuration.

How to run subsequent tuning sessions
Once the initial tuning session is completed, the “Stop tuning” button is replaced by a “Start
tuning” button. Before starting a new tuning session, you need to run the DBtune client. When
you press the "Start tuning" button, a popup window will give you the command to run on your
CLI. Run the command on your cloud instance as sudo user and use a terminal multiplexer (see
step 3 above), to start a new tuning session from the beginning. Previous tuning sessions will
appear under the “History” tab on the left.

19

Modify memory usage guardrail threshold
As a default behavior DBtune will automatically react and move away from PostgreSQL
configurations that make the database instance use more than 90% available memory. This
threshold can be customized in the DBtune YAML configuration files to accommodate specific
user requirements. This can be achieved by adding the following line to the dbtune_config.yml
file located in the downloaded dbtune_client:

tuning_session:
Maximum_memory_usage_allowed: 90

Choose alternative optimization target
The default target optimization is average query runtime which is a form of latency (measured in
milliseconds). Tuning for average query runtime will also have the effect of improving the
number of transactions per second (TPS) which is a form of throughput.

It is possible to put more emphasis on explicitly tune for throughput in the Additional tuning
options in the Start tuning database page.

The target options are either:
1. Throughput: measured in transactions per second (TPS), or

20

2. Average query runtime: this represents latency, which is measured in milliseconds
(ms).

The recommended target is average query runtime, which we have seen works in most cases
for both metrics. In case you want to be more intentional about the objective that you chose, we
recommend choosing:

1. Throughput if your machine/workload is hitting a bottleneck (either close to 100% CPU or
100% I/O), or in other words, an increased workload wouldn’t lead to increased
throughput. In this scenario DBtune can help you to increase the overall throughput of
your workload and achieve improved performance at peak.

2. Average query runtime if your workload is composed of complex queries and you wish to
reduce the average runtime of one query. The average query runtime can improve even
when the machine is not bottlenecked quite as intensely. Bigger database instances will
drive bigger query runtime improvement.

Note that typically, improving one optimization target will also benefit the other target. However,
this choice allows the optimizer to focus on an optimization objective.

21

Security and privacy
Port used: 443

Infosec whitelisting:
● AWS endpoints that is used in the DBtune client:

https://bwqh2n66kg.execute-api.eu-north-1.amazonaws.com/prod
● AWS s3 bucket link used for downloading the client:

https://dbtune-eu-client-package-prod.s3.amazonaws.com

Comprehensive list of data that is being fetched from the machine/PG instance:

1.Client system information
● Hardware

○ NUMOFCPU
○ TOTALMEMORY
○ AVAILABLEMEMORY
○ CLOUDPROVIDER
○ INSTANCETYPE
○ DISKSIZE
○ HDTYPE

● Software
○ DBVERSION
○ OSTYPE
○ MAXCONNECTIONS
○ DATABASESIZE

2. Performance metrics retrieved
● Performance

○ Throughput
○ Query runtime

3. Configuration parameters tuned
● Work_mem
● Max_wal_size
● Seq_page_cost
● Shared_buffers
● Random_page_cost
● Checkpoint_timeout
● Max_parallel_workers
● Max_worker_processes
● Bgwriter_lru_maxpages
● Effective_io_concurrency

22

● Checkpoint_completion_target
● Max_parallel_workers_per_gather

4. Client monitoring stats (posted every second)

● Cpu_stats
○ Cpu_util

● Memory_stats
○ free
○ slab
○ used
○ total
○ active
○ cached
○ shared
○ buffers
○ percent
○ inactive
○ Available

● Io_stats
○ Busy_time

○ Read_time

○ Read_bytes

○ Read_count

○ Write_time

○ Write_bytes

○ Write_count

○ Read_merged_count

○ write_merged_count

● Db_stats
○ Throughput

○ query_runtime

23

